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Problem 1 (Gaussian bandits with unknown mean and variance — 10 pts). Consider the
standard setup of the bandit problem we discussed in the course. We assumed that the
K arms have unknown means and are all 1-subgaussian. For the upper confidence bound
(UCB) algorithm, after sampling each arm once in the beginning, in each subsequent round
we decided on the arm according to
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decision metric

Here, Ti(t—1) denotes the number of times we chose arm & up to and including time ¢ —1,
fi+—1 is the empirical mean of arm k& at time ¢ — 1, using the relevant Ty (t — 1) samples,
and ¢, denotes the confidence we want to have at time ¢.

a) [2 pts] Write down the decision metric if arm &k, 1 < k < K, is o} -subgaussian and the
parameters {07} are known?

In general the parameters {o7}5_ | are unknown. However, we can estimate their values from
the samples. More precisely, if we are given iid samples Wy,--- W, let i, = %Z?:l W,
and let 62 = ﬁ S (Wi —fin)? be the sample mean and the sample variance, respectively.
It is then tempting to conjecture that we can construct an UCB algorithm by replacing the
variance terms o7 in point (a) above with their empirical values &,it_l and possibly change
the involved constants.

We will now confirm this conjecture for the concrete case where all arms have a Gaussian
distribution. More precisely, we assume that arm k, 1 < k < K, is distributed according
to N'(px,02). The parameters {(uy,o7)}5 | are unknown.

b) [5 pts] Write down the decision metric for this case.

HINT: If we are given iid samples W7, --- W, from a Gaussian distribution with parameters
(u,0?), and (fi,,62) are the respective empirical quantities, then

~
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is distributed according to the so-called student t-distribution with n—1 degrees of freedom.

Note that the distribution of S, does not depend on (u,0?) and is symmetric around 0.
Further, the confidence values for this distribution can be looked up in tables or can be
computed. Le., you can asssume that for any J € [0,1] the real numbers as,,, so that

P{Sn > Oé&n} =94

are known.

¢) [3 pts| Show that the distribution of S, indeed does not depend on (u,o?).



HINT: The distribution of (f, —p) is Gaussian with mean zero and variance o?/n. Further,
(n—1)62 /02 follows the so-called x?* distribution with n —1 degrees of freedom. Note that
the x? distribution does not depend on (u,0?). Further, (i, — u) and (n — 1)62/0? are
independent.

Solution 1.
a) In this case we would decide on the next arm according to
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b) For a given value § > 0 (the confidence value) and n € N (the degrees of freedom), let
a5, be the value so that P{S, > as,} = ¢ according to the student ¢-distribution with n
degrees of freedom. This value can be looked up in a table or computed numerically.

According to the hint, J“n”/?/’% has a student ¢-distribution with n — 1 degrees of freedom.

Hence

ﬂn — M
P
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By the symmetry of this distribution we have

> Oég’nfl} = 0.

[Ln_,u
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This can be rewritten as
. Qsp_10y
P{u < i+ 2212 — 14,

In turn this is equivalent to

Qs n—1 &n }

P{p > fin + 210
{u u+\/ﬁ

Hence we see that the decision should be taken according to

aé,Tk(t—l)—l&k,tfl
Ti(t —1)
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This is of the same form as our original decision metric, just with a different constant and
we swapped out the true standard deviaiton for the empirical standard deviation.



¢) We have

g _Fm—p (i —p)fo
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Now note that by the hint, the numerator and the denominator are independent random

variables and that the distributions of those random variables do not depend on (u,c?).
Hence, S,, has a distribution that does not depend on (u,0?).



Problem 2 (KL Divergence between mixtures — 8 pts). Mixture distributions are a key
modeling tool and appear in many guises in Data Science. In this problem, we derive a
bound on the KL divergence between mixture distributions.

a) [5 pts] Consider two mixture distributions of K components, given as

K

PY(y) = Z Msz(y) and QY Z I/ZQ’L (2)
i=1
where 0 < p; <1 and 0 <v; <1 and > ,p; = Y . v; = 1. Here, P,(y) and Q;(y) are
distributions over an alphabet ). Prove that

K

D(Py|Qy) < D(M|’”)+ZMD(H||Q1')7 (3)
i=1

where D(p|lv) denotes the KL divergence between the distributions (1, o, ..., px) and

(v1, Vo, ..., vk). Hint: Recall conditional KL divergence. Also, it may be helpful to introduce

a random variable X distributed over the set X = {1,2,..., K} and rewrite Py(y) in the

form Py (y) = > v Px(x)Pyx(y|x), for appropriately chosen Px(x) and Py x(y|x).

b) [3 pts] Give examples where the bound is good and where the bound is bad. The more

extreme your examples, the more points you get. The less trivial your examples, the more

points you get. Hint: Try K = 2.

Solution 2. (a) To connect to the class, let us change notation. Specifically, let us introduce
a random variable X distributed over the alphabet {1,2,..., K'}. Define
Px(z =1i)=p; and Pyx(ylz =i) = Py (4)

and then, of course, Pxy(z,y) = Px(x)Py|x(y|z). The resulting marginal distribution
of Y is then

ZPX z) Pyx (y|r) = Zuipi(y), (5)

exactly as in the problem statement. By the same token, define

Qr=1i)=v; and Qylz=1i)=Qi(y) (6)
and Qxy(r,y) = Qx(2)Qy|x(y|z). The resulting marginal distribution of Y is then
K
Z Qx(x QY\X (ylz) = Z viQi(y), (7)
zeX i=1

exactly as in the problem statement.



Next, let us rewrite the claim that needs to be proved in terms of the new notation. To
this end, we recall Homework 2, Problem 3, which introduced Conditional KL Diver-
gence. From that homework problem, we can write:

D(Pyx||Qyix|Px) =Y Px(z)D(Pyix(-|2)||Qyx (]x)) (8)
= ZMD(H“QJ (9)

Moreover, we can write
D(Px|@x) = D(ullv). (10)
Combining terms, the statement to be proved can thus be rewritten as

D(FPy|Qy) < D(Px|Qx) + D(Pyx||Qyx|Px)- (11)

Note that this is almost the same statement as what you did in Homework 2, Problem
3, Part (c), but not exactly. In fact, in Homework 2, Problem 3, Part (c), we considered
the case Px = (Qx. The proof here proceeds along the same lines. Namely, we can use,
exactly as in Homework 2, Problem 3, Part (a), the fact that

D(Pxy|Qxy) = D(Px||Qx) + D(Pyx[|Qvx|Px). (12)

The remaining part is to show that indeed, D(Py|Qy) < D(Pxy||/@xy). This is, of
course, a direct application of the data processing inequality for KL divergence. In fact,
the proof technique from Homework 2, Problem 3, Part (c) works without any changes.
Namely, define the kernel

_ L ity =y,
W (ylz,y) = { . (13)
0, otherwise.
Then we have
Py(j) = > Pxy(x,y)W(jlz,y) = Py(j) (14)
.y
and
Qv (i) =Y Quy (z, )W (ila,y) = Qv(H) (15)
x’y
Hence, we have, by the data processing inequality for KL divergence,
D(Pxy||@xy) = D(Py||Qy) = D(Py[|Qy). (16)

This completes the proof.



(b) Give examples where the bound is good and where the bound is bad.
Where it is good:

e Let P, = P, for all i. Let Q; = @ for all i. Then, the bound reads
D (P Q) < D(pl|lv) + D(P1]|Q1). (17)

We can see that in this case, the bound is tight if and only if u; = 1; for all 1.
e Let P, = (; for all 7. Then, the bound reads

D (Z 1P (y)

If we additionally assume p; = v; for all 7, then both the LHS as well as the RHS
are zero, and thus, the bound is tight.

K

> mﬂ(y)) < D). (18)

i=1

Where it is bad: The main insight is that in our bound, it can happen that the LHS is
finite but the RHS is infinite:

o Let P, = P, for all i. Let Q; = @), for all i. Then, the bound reads

D (P Q1) < D(ullv) + D(P[|Qq). (19)

Now, if there is a single ¢ for which p; > 0 but v; =0, then D(u||v) = co. So in
this case, the bound is as loose as it gets.

o Alternatively, select P; and () such that there exists a value of y such that
Pi(y) > 0 but Q1(y) = 0. Then, D(P,||Q1) = oo, and thus, choosing u; > 0,
this is enough to make the RHS of our bound infinite. To complete the example,
we now select ()o such that the LHS of our bound is finite. Namely, select it such
that Q2(y) > 0 for all y in the alphabet of Y and select v5 > 0. This is enough
to ensure that the marginal distribution Qy(y) > 0 for all y, and thus, the LHS
of our bound is finite.

e Finally, the challenge is if we can make the LHS equal to zero and the RHS infinite
— the most extreme case. This is actually not hard at all. For example, as
follows. Let K = 2. Let the alphabet of Y be Y = {1,2,..., M}, where M is
even. Let Pi(y) = & for y = 1,2,...M/2, and zero otherwise. Let Py(y) = &
for y = M/2+1,M/2+ 2,... M, and zero otherwise. Let Qi(y) = Py(y) and
Q2(y) = Pi(y). Let py = ps = vy = vy = 3. With this, we find that P(y) and
Q(y) are both the uniform distribution, making the LHS of our bound zero. But
D(P||@Q1) = oo, making the RHS of our bound infinite.



Problem 3 (Estimation — 10 pts). Let S € [0,1] be distributed with a Beta distribution
with parameters (1/2,1/2), which, as we have seen in class, is p(s) = }rs’%(l — s5)7 2.
We make n observations X, Xs,..., X, that are (conditionally) independent Bernoulli (.S)

random variables.

a) [5 pts] Calculate the conditional distribution p(s|zy,za,...,x,). Express it in terms of
the integer ¢, which is the number of '1’s in the sample (z1,s,...,2,).

Hint: For a,b € RT, we have fol Yy 1 —y)tdy = Fr(g_l;g;), where T'(+) denotes the Gamma

function.

b) [5 pts] We would like to estimate S from Xi, Xs,..., X,, such as to minimize the mean-
squared error E[(S — S(X1, Xs,...,X,)?. Find the optimum estimate S(X1, Xa, ..., X,).
Simplify your result as much as possible.

Hint: The Gamma function satisfies the property, for ¢ € RT, that T'(c+ 1) = cI'(¢).

Solution 3. The MMSE estimator is the conditional expectation. Let ¢ denote the number

of ones in the sample (x1,za,...,x,).
Let us first find the conditional distribution p(s|zi, za,. .., x,).
p(s, 21, T2, ..., 20) = p(S)p(T1, T2, . . ., Ty|S) (20)
s_%(l — 3)_%
= (1 =) (21)
T
1 tfl ,t,l
— T4 - 5)" 22
Limh (1 eyt (22)
and thus,
1t t—1 n—t—%
p(1,To, ..., x) =— | s2(1—s)"""2ds (23)
T Jo
1T+ DT (n—t+1
T F(n+1)
Thus,
p(s)p(x17$27 s axnls)
ce Tp) = 25
p(sfer, @2, Tn) p(T1, Toy .oy Ty) (25)
F(n + 1) t—1/2(1 o S)n—t—l/Q (26)

TT{+12T(n—t+1/2)"



To calculate the conditional mean, we now proceed as follows:
[E[S|X1 = l’l,XQ = To,... ;Xn = In]
1
= / sp(s|xy, za, ..., xy)ds
0

I'(n+1) ! t—1/2 —t—1
. 1— n /2
F(n—t+1/2)/08 s (1—135) ds

T(n+1) T(t+3/2)0(n—t+1/2)

)

( ! t+1/2 n—t—1/2
F(t+1/2)F(n—t—|—1/2)/0 SR = ) s

(

)

I'(n—t+1/2) I'(n+2)
_ T(n+1) T(t+3/2)

T I(n+2) [(t+1/2)

t+1/2

 on+4+1"

(27)
(28)
(29)
(30)
(31)

(32)

which, intriguingly, is exactly the “add-1/2” estimator that we have studied (from a different

perspective) in the chapter on Distribution Estimation...



